On Moduli of Convexity in Banach Spaces

نویسنده

  • JIŘÍ REIF
چکیده

Let X be a normed linear space, x ∈ X an element of norm one, and ε > 0 and δ(x,ε) the local modulus of convexity of X . We denote by ρ(x,ε) the greatest ρ≥ 0 such that for each closed linear subspace M of X the quotient mapping Q : X → X/M maps the open ε-neighbourhood of x in U onto a set containing the open ρ-neighbourhood of Q(x) in Q(U). It is known that ρ(x,ε) ≥ (2/3)δ(x,ε). We prove that there is no universal constant C such that ρ(x,ε) ≤ Cδ(x,ε), however, such a constant C exists within the class of Hilbert spaces X . If X is a Hilbert space with dimX ≥ 2, then ρ(x,ε) = ε2/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Convex Functions on Banach Spaces

We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.

متن کامل

A Characterization of B-convexity and J-convexity of Banach Spaces

In [K.-I. Mitani and K.-S. Saito, J. Math. Anal. Appl. 327 (2007), 898–907] we characterized the strict convexity, uniform convexity and uniform non-squareness of Banach spaces using ψ-direct sums of two Banach spaces, where ψ is a continuous convex function with some appropriate conditions on [0, 1]. In this paper, we characterize the Bn-convexity and Jn-convexity of Banach spaces using ψ-dire...

متن کامل

Almost Fréchet differentiability of Lipschitz mappings between infinite dimensional Banach spaces

We give several sufficient conditions on a pair of Banach spaces X and Y under which each Lipschitz mapping from a domain in X to Y has, for every ǫ > 0, a point of ǫ-Fréchet differentiability. Most of these conditions are stated in terms of the moduli of asymptotic smoothness and convexity, notions which appeared in the literature under a variety of names. We prove, for example, that for ∞ > r...

متن کامل

k-β and k-Nearly Uniformly Convex Banach Spaces

vol. 162, No. 2, 1991 k-β and k-Nearly Uniformly Convex Banach Spaces Denka Kutzarova Different uniform geometrical properties have been defined between the uniform convexity and the reflexivity of Banach spaces. In the present paper we introduce other properties of this type, namely k-β and k-nearly uniform convexity. The definitions, as well as some of the results presented here, are announce...

متن کامل

A Proximal Point Method for Nonsmooth Convex Optimization Problems in Banach Spaces

In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005